(Optimizing) Realistic Rendering with Many-Light Methods

Improved VPL Distribution

(part of the "Handling difficult light paths" section)

Jaroslav Křivánek Charles University in Prague

VPL rendering

Distribute VPLs 1. ×

2. Render with VPLs

Why alternate VPL distribution?

• VPLs may not end up where needed

Example: Large environments

scene

inst. radiosity

Example: Local light inter-reflections

artifacts

no local light inter-reflections

Purpose & approach

Purpose

Ensure VPLs end up where needed

- Approaches
 - Rejection of unimportant VPLs
 - Metropolis sampling for VPL distribution
 - Distribute VPLs by tracing paths from the camera

Rejection of unimportant VPLs

Rejection of unimportant VPLs

- Autodesk 360 Rendering
 Covered by Adam later in the course
- [Georgiev et al., EG 2010]
 - Covered on the following slides (courtesy of lliyan Georgiev)

 Good for large environments but not for local interactions

VPL rejection – Idea

- Accept VPLs proportionately to their total image contribution
 - Reject some of those that contribute less than average

VPL rejection – Idea

- Accept VPLs proportionately to their total image contribution
 - Reject some of those that contribute less than average

VPL rejection – Algorithm

• Want VPLs with equal image contribution Φ_{ν}

- For each VPL candidate i
 - Estimate total image contribution Φ_i

- Accept w/ probability
$$p_i = \min\left\{\frac{\Phi_i}{\Phi_v} + \varepsilon, 1\right\}$$

(divide energy of an accepted VPL by *p*_{*i*})

Estimating image contribution

No need to be accurate

- Estimating \$\Phi_\$, (average VPL contribution)
 Based on a few pilot VPLs
- Estimating \$\Phi_i\$ (contribution of VPL candidate \$i\$)
 Contribution to only a few image pixels

VPL rejection – Results

Instant Radiosity

[Georgiev et al. 2010] (7% acceptance)

VPL rejection – Conclusion

Cheap & simple

• Can help a lot

"One-pixel image" assumption
 Not suitable for local light inter-reflections

Metropolis sampling for VPL distribution

Metropolis sampling for VPL distrib.

• "Metropolis instant radiosity" [Segovia et al., EG 2007]

Good for large environments but not for local interactions

Metropolis IR – Path mutation

Metropolis IR – Path mutation

Metropolis IR – Path mutation

Metropolis IR – Resulting VPL set

Metropolis IR – Results

Instant Radiosity

Metropolis Instant Radiosity

Images courtesy of Ben Segovia and Bernard Péroche

VPL rejection vs. Metropolis IR

- Same goal: VPLs with same image contribution
- Similar VPL set quality

	VPL rejection	Metropolis IR
Performance (not-so-complex cases)	\checkmark	\checkmark
Performance (difficult cases)	×	\checkmark
Implementation	\checkmark	×

Sampling VPLs from the camera

(Local VPLs)

Sampling VPLs from the camera

 Address the local interreflection problem

Guaranteed to produce
 VPLs important for the image

Sampling VPLs from the camera

- "Bidirectional instant radiosity" [Segovia et al., EGSR 2006]
- "Local VPLs"
 [Davidovič et al., SIGGRAPH Asia 2010]

[Davidovič et al. 2010]

Split illumination

Review of compensation

Kollig & Keller compensation

Local VPLs – Idea

• [Davidovič et al. 2010]

Local VPLs – Technical solution

• [Davidovič et al. 2010]

Probability density from **tile** pixels

Local VPLs – Technical solution

[Davidovič et al. 2010]

• Key idea: Tile visibility approximation

The complete local solution

Connect to global lights

Contribute to a tile

Local solution (compensation)

The complete local solution

Local VPLs – Results

local lights: 17,100,000

Local VPLs – Results

local lights: 17,100,000

Local VPLs – Limitations

- Loss of shadow definition
- Small loss of energy

Local VPLs – Conclusions

- Good for local inter-reflections
- Really useful only when used in conjunction with a separate "global" solution

Thank you

